Εικόνα εξωφύλλου από Amazon
Εξώφυλλο από Amazon.com
Κανονική προβολή Προβολή MARC Προβολή ISBD

Practical radiobiology for proton therapy planning / Bleddyn Jones.

Κατά: Τύπος υλικού: ΚείμενοΚείμενοΣειρά: IOP expanding physics | Series in physics and engineering in medicine and biologyΛεπτομέρειες δημοσίευσης: Bristol : IOP Publishing, c2017.Περιγραφή: 1 ηλεκτρονική πηγή (πολίλες σελιδαριθμήσεις) : εικ. (μερ. έγχρ.)ISBN:
  • 9780750313384
  • 9780750313407
Θέμα(τα): Ταξινόμηση DDC:
  • 616.994 064 2 23
Πηγές στο διαδίκτυο:Also available in print.
Περιεχόμενα:
1. Particle physics for biological interactions -- 1.1. Physical beam parameters, essential dosimetry and reference (or control) radiation requirements for RBE studies -- 1.2. Physics interacting with biology
2. The essential radiobiology background -- 2.1. Introduction -- 2.2. Background and models -- 2.3. The [alpha]/[beta] ratio and its choice for modelling particle therapies
3. Some important medical and surgical considerations, including clinical trials -- 3.1. Introduction -- 3.2. Surgery -- 3.3. Cytotoxic chemotherapies -- 3.4. Age and other medical conditions -- 3.5. Interpretation of the case histories and literature -- 3.6. Clinical trials -- 3.7. Ethical issues -- 3.8. Mixed endpoints -- 3.9. The importance of follow-up -- 3.10. Publication bias -- 3.11. Some future prospects
4. Treatment planning and further medical perspectives -- 4.1. Introduction -- 4.2. Treatment planning processes -- 4.3. The important interaction of RBE issues with the marginal target volumes -- 4.4. Comparative planning studies -- 4.5. Trade-off situations in comparative treatment planning -- 4.5..1 Changes in the treatment plan -- 4.6. How to accommodate assumed errors in the RBE -- 4.7. The product of LET and dose
5. Historical development of radiotherapy including what was learned from fast neutrons -- 5.1. Introduction -- 5.2. A brief synopsis -- 5.3. Neutron therapy -- 5.4. More recent developments based on neutron studies -- 5.5. Some important conclusions
6. Fractionation -- 6.1. Introduction and background radiobiology -- 6.2. A brief history of fractionation -- 6.3. Modelling of fractionation -- 6.4. RBE and dose per fraction -- 6.5. Effects of regions of higher and lower dose per fraction relative to the prescribed dose for different fractionation patterns -- 6.6. Taking RBE uncertainty into account in fractionation -- 6.7. The use of the LQ model with large fraction sizes -- 6.8. Optimisation of fractionation using calculus methods -- 6.9. Other contributions to fractionation -- 6.10. Summary
7. The case for using a variable proton RBE -- 7.1. Introduction -- 7.2. Arguments to preserve the status quo or avoid using RBE -- 7.3. Justification of a variable RBE -- 7.4. Further considerations
8. A general RBE simple efficiency model for protons and light ions -- 8.1. Introduction -- 8.2. The experimental data and its limitations -- 8.3. Description of the Z-specific model -- 8.4. The graphical results -- 8.5. Conclusions and what remains to be done
9. Inclusion of the energy-efficiency LET and RBE model in proton therapy -- 9.1. Introduction -- 9.2. RBE uncertainties -- 9.3. Description of the quantitative model -- 9.4. Some comparisons with experimental data sets -- 9.5. Two clinical examples where PBT could be suboptimal -- 9.6. Prediction of tumour response from the RBE increment -- 9.7. Concluding discussion
10. Compensating for elapsed time : unintended treatment interruptions and re-treatments -- 10.1. Introduction -- 10.2. Unintended treatment interruptions -- 10.3. Summary for unintended treatment gap corrections -- 10.4. Re-treatments
11. Errors of Bragg peak positioning and their radiobiological correction -- 11.1. Introduction -- 11.2. Brief description of methods -- 11.3. Description of the model -- 11.4. General discussion -- 11.5. Conclusions
12. Additional considerations and conclusions -- 12.1. Introduction -- 12.2. Dose escalation where circumstances permit -- 12.3. Simultaneous 'sensitisation' effects by new therapies -- 12.4. Sensitivity analysis of the energy efficiency model -- 12.5. What could be achieved in a single international laboratory dedicated to high LET radiobiology -- 12.6. Conclusions.
Περίληψη: Practical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject.
Δεν αντιστοιχούν φυσικά τεκμήρια σε αυτήν την εγγραφή

Περιλαμβάνει βιβλιογραφικές παραπομπές.

1. Particle physics for biological interactions -- 1.1. Physical beam parameters, essential dosimetry and reference (or control) radiation requirements for RBE studies -- 1.2. Physics interacting with biology

2. The essential radiobiology background -- 2.1. Introduction -- 2.2. Background and models -- 2.3. The [alpha]/[beta] ratio and its choice for modelling particle therapies

3. Some important medical and surgical considerations, including clinical trials -- 3.1. Introduction -- 3.2. Surgery -- 3.3. Cytotoxic chemotherapies -- 3.4. Age and other medical conditions -- 3.5. Interpretation of the case histories and literature -- 3.6. Clinical trials -- 3.7. Ethical issues -- 3.8. Mixed endpoints -- 3.9. The importance of follow-up -- 3.10. Publication bias -- 3.11. Some future prospects

4. Treatment planning and further medical perspectives -- 4.1. Introduction -- 4.2. Treatment planning processes -- 4.3. The important interaction of RBE issues with the marginal target volumes -- 4.4. Comparative planning studies -- 4.5. Trade-off situations in comparative treatment planning -- 4.5..1 Changes in the treatment plan -- 4.6. How to accommodate assumed errors in the RBE -- 4.7. The product of LET and dose

5. Historical development of radiotherapy including what was learned from fast neutrons -- 5.1. Introduction -- 5.2. A brief synopsis -- 5.3. Neutron therapy -- 5.4. More recent developments based on neutron studies -- 5.5. Some important conclusions

6. Fractionation -- 6.1. Introduction and background radiobiology -- 6.2. A brief history of fractionation -- 6.3. Modelling of fractionation -- 6.4. RBE and dose per fraction -- 6.5. Effects of regions of higher and lower dose per fraction relative to the prescribed dose for different fractionation patterns -- 6.6. Taking RBE uncertainty into account in fractionation -- 6.7. The use of the LQ model with large fraction sizes -- 6.8. Optimisation of fractionation using calculus methods -- 6.9. Other contributions to fractionation -- 6.10. Summary

7. The case for using a variable proton RBE -- 7.1. Introduction -- 7.2. Arguments to preserve the status quo or avoid using RBE -- 7.3. Justification of a variable RBE -- 7.4. Further considerations

8. A general RBE simple efficiency model for protons and light ions -- 8.1. Introduction -- 8.2. The experimental data and its limitations -- 8.3. Description of the Z-specific model -- 8.4. The graphical results -- 8.5. Conclusions and what remains to be done

9. Inclusion of the energy-efficiency LET and RBE model in proton therapy -- 9.1. Introduction -- 9.2. RBE uncertainties -- 9.3. Description of the quantitative model -- 9.4. Some comparisons with experimental data sets -- 9.5. Two clinical examples where PBT could be suboptimal -- 9.6. Prediction of tumour response from the RBE increment -- 9.7. Concluding discussion

10. Compensating for elapsed time : unintended treatment interruptions and re-treatments -- 10.1. Introduction -- 10.2. Unintended treatment interruptions -- 10.3. Summary for unintended treatment gap corrections -- 10.4. Re-treatments

11. Errors of Bragg peak positioning and their radiobiological correction -- 11.1. Introduction -- 11.2. Brief description of methods -- 11.3. Description of the model -- 11.4. General discussion -- 11.5. Conclusions

12. Additional considerations and conclusions -- 12.1. Introduction -- 12.2. Dose escalation where circumstances permit -- 12.3. Simultaneous 'sensitisation' effects by new therapies -- 12.4. Sensitivity analysis of the energy efficiency model -- 12.5. What could be achieved in a single international laboratory dedicated to high LET radiobiology -- 12.6. Conclusions.

Practical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject.

Also available in print.

Πανεπιστήμιο Πατρών, Βιβλιοθήκη & Κέντρο Πληροφόρησης, 265 04, Πάτρα
Τηλ: 2610969621, Φόρμα επικοινωνίας
Εικονίδιο Facebook Εικονίδιο Twitter Εικονίδιο Soundcloud