Εικόνα εξωφύλλου από Amazon
Εξώφυλλο από Amazon.com
Κανονική προβολή Προβολή MARC Προβολή ISBD

Understanding stellar evolution / Henny J.G.L.M. Lamers, Emily M. Levesque.

Κατά: Συντελεστής(ές): Τύπος υλικού: ΚείμενοΚείμενοΣειρά: AAS-IOP Astronomy | IOP astronomyΛεπτομέρειες δημοσίευσης: Bristol : IOP Publishing, c2017.Περιγραφή: 1 ηλεκτρονική πηγή (ποικίλες σελιδαριθμήσεις) : εικ. (μερ. έγχρ.)ISBN:
  • 9780750312783
  • 9780750312806
Θέμα(τα): Ταξινόμηση DDC:
  • 523.88 23
Πηγές στο διαδίκτυο:
Περιεχόμενα:
1. Stars : setting the stage -- 1.1. The sun : our star -- 1.2. The chemical composition of the sun and stars -- 1.3. The structure of stars -- 1.4. Stellar evolution in a nutshell -- 1.5. Summary
2. Observations of stellar parameters -- 2.1. The distance of stars -- 2.2. The mass of stars -- 2.3. The luminosity of stars -- 2.4. Magnitude, color, and temperature -- 2.5. The mass-luminosity relation -- 2.6. The Hertzsprung-Russell diagram and the color-magnitude diagram -- 2.7. Nomenclature of regions in the HRD and CMD -- 2.8. Summary
3. Hydrostatic equilibrium and its consequences -- 3.1. Conservation of mass : the mass continuity equation -- 3.2. Hydrostatic equilibrium -- 3.3. The virial theorem : a consequence of HE -- 3.4. Summary
4. Gas physics of stars -- 4.1. Mean particle mass -- 4.2. A general expression for the pressure -- 4.3. Radiation pressure -- 4.4. Pressure of an ideal gas -- 4.5. Electron Degeneracy -- 4.6. The equation of state (EoS) for electron gas -- 4.7. Neutron degeneracy -- 4.8. Polytropic gas -- 4.9. Summary
5. Opacities in stars -- 5.1. The Rosseland-mean opacity -- 5.2. Electron scattering : [sigma]e -- 5.3. Free-free absorption : [kappa]ff -- 5.4. Bound-freE absorption : [Kappa]BF -- 5.5. BOUND-bound absorption : [kappa]bb -- 5.6. Total Rosseland-mean opacity : [kappa]r -- 5.7. The mean-free path of photons : l -- 5.8. Summary
6. Radiative energy transport -- 6.1. Eddington's equation for radiative equilibrium -- 6.2. Mass-luminosity relation for stars in HE and RE -- 6.3. The Eddington limit : the maximum luminosity and the maximum mass -- 6.4. Summary
7. Convective energy transport -- 7.1. The Schwarzschild criterion for convection -- 7.2. Convection in a layer with a [mu]-gradient : Ledoux criterion -- 7.3. The mixing length : how far does a convective cell rise before it dissolves -- 7.4. The efficiency of convective energy transport -- 7.5. The convective velocity -- 7.6. Typical values of convective velocity and the timescale -- 7.7. The super-adiabatic temperature gradient in convection zones -- 7.8. Convective overshooting -- 7.9. Convection : where and why? -- 7.10. Chemical mixing by convection and its consequences -- 7.11. Summary
8. Nuclear fusion -- 8.1. Reaction rates and energy production -- 8.2. Thermonuclear reaction rates and the Gamow peak -- 8.3. Abundance changes -- 8.4. H[right arrow]He fusion -- 8.5. He[right arrow]C fusion : the triple-gas process -- 8.6. C-fusion, O-fusion, and Ne-photodisintegration -- 8.7. Photodisintegration and the formation of heavy elements -- 8.8. Summary of major nuclear reactions in stars -- 8.9. Formation of heavy elements by neutron capture -- 8.10. The minimum core mass for igniting fusion reactions -- 8.11. Fusion phases of stars in the ([rho]c,Tc) plane -- 8.12. Summary
9. Stellar timescales -- 9.1. The dynamical timescale -- 9.2. The thermal timescale or Kelvin-Helmholtz timescale -- 9.3. The nuclear timescale -- 9.4. The convection timescale -- 9.5. Comparison of timescales -- 9.6. Summary
10. Calculating stellar evolution -- 10.1. Assumptions for computing stellar evolution -- 10.2. The equations of stellar structure -- 10.3. Boundary conditions -- 10.4. Solving the structure equations -- 10.5. Principles of stellar evolution calculations -- 10.6. Summary
11. Polytropic stars -- 11.1. The structure of polytropic stars : P = K[rho][gamma] -- 11.2. Stellar parameters of polytropic models -- 11.3. The mass-radius relation of polytropic stars -- 11.4. Summary
12. Star formation -- 12.1. The interstellar medium -- 12.2. The Jeans mass for gravitational contraction -- 12.3. The collapse of molecular clouds -- 12.4. Fragmentation of molecular clouds -- 12.5. The minimum mass of stars -- 12.6. The end of the free-fall phase -- 12.7. The contraction of a convective protostar : the descent along the Hayashi track -- 12.8. The contraction of a radiative pre-main- sequence star : from the Hayashi track to the main sequence -- 12.9. T Tauri stars and Herbig Ae-Be stars -- 12.10. The destruction of lithium and deuterium -- 12.11. Stars that do not reach H-fusion : brown dwarfs with M < 0.08 M[sun] -- 12.12. The stellar initial mass function -- 12.13. Star formation in the early universe -- 12.14. Summary
13. H-fusion in the core : the main-sequence phase -- 13.1. The zero-age main sequence (ZAMS) : homology relations -- 13.2. The influence of abundances on the ZAMS -- 13.3. Evolution during the main-sequence phase -- 13.4. The end of the MS phase : the TAMS -- 13.5. The MS Lifetime -- 13.6. Summary
14. Principles of post-main-sequence evolution -- 14.1. Isothermal cores : the Sch�onberg-Chandrasekhar limit -- 14.2. The mirror principle of stars with shell fusion -- 14.3. The Hayashi line of fully convective stars -- 14.4. Summary
15. Stellar winds and mass loss -- 15.1. Types of winds -- 15.2. Line-driven winds of hot stars -- 15.3. Dust-driven winds of cool stars -- 15.4. Mass-loss formulae for stellar evolution -- 15.5. Summary
16. Shell H-fusion in low- and intermediate-mass stars : red giants -- 16.1. The start of the H-shell fusion -- 16.2. The H-shell fusion phase of low-mass stars of 0.8-2M[sun] -- 16.3. The H-shell fusion phase of intermediate-mass stars of 2-8 M[sun] -- 16.4. The Mcore-L relation for red giants -- 16.5. Metallicity dependence of the red giant branch -- 16.6. Mass loss during the red giant phase -- 16.7. Summary
17. Helium fusion in low-mass stars : horizontal branch stars -- 17.1. The ignition of helium fusion in low-mass stars -- 17.2. Helium fusion in the core : horizontal branch stars -- 17.3. Evolution on the horizontal branch -- 17.4. The observed HB of globular clusters -- 17.5. Summary
18. Double shell fusion : asymptotic giant branch stars -- 18.1. The start of the AGB phase -- 18.2. The Mcore-L relation of AGB stars -- 18.3. The second dredge-up at the beginning of the AGB phase -- 18.4. The thermal pulsing AGB phase (TP-AGB) -- 18.5. The third dredge-up -- 18.6. Summary of the dredge-up phases -- 18.7. The evolution speed during the AGB phase -- 18.8. Mass loss and the end of the AGB evolution -- 18.9. Summary
19. Post-AGB evolution and planetary nebulae -- 19.1. The post-AGB phase -- 19.2. Born-again AGB stars -- 19.3. Planetary nebulae -- 19.4. Fading to the white dwarf phase -- 19.5. Summary
20. White dwarfs and neutron stars -- 20.1. Stars that become white dwarfs -- 20.2. The structure of white dwarfs -- 20.3. The Chandrasekhar mass limit for white dwarfs -- 20.4. The cooling of white dwarfs -- 20.5. Neutron stars -- 20.6. Summary
21. Pulsating stars -- 21.1. Classical Radial Pulsators -- 21.2. Pulsation periods of classical radial pulsators -- 21.3. The [kappa]-mechanism of classical radial pulsators -- 21.4. An example : the pulsation of [delta] Cephei -- 21.5. Nonradial pulsations and asteroseismology -- 21.6. Summary
22. Observations of massive stars : evidence for evolution with mass loss -- 22.1. The observed upper limit in the HRD -- 22.2. The atmospheric Eddington limit -- 22.3. Luminous blue variables and the atmospheric Eddington limit -- 22.4. Wolf-Rayet stars -- 22.5. The dependence of massive star evolution on metallicity -- 22.6. Summary
23. Evolution of massive stars of 8-25M[sun] -- 23.1. Predicted evolutionary tracks -- 23.2. The internal evolution during the post-MS phase of stars of 8 to 25M[sun] -- 23.3. Stellar pulsation during blue loops -- 23.4. Summary
24. The evolution of massive stars of 25-120M[sun] : dominated by mass loss -- 24.1. The effect of mass loss during the main-sequence phase -- 24.2. Predicted evolution tracks with mass loss -- 24.3. The evolution of a 60M[sun] star with mass loss -- 24.4. The Conti scenario -- 24.5. Summary
25. Rotation and stellar evolution -- 25.1. The critical velocity of rotating stars -- 25.2. The Von Zeipel effect -- 25.3. nonspherical mass loss of rapidly rotating stars -- 25.4. Mixing by meridional circulation -- 25.5. The effect of rotation on the evolution of massive stars -- 25.6. Homogeneous evolution -- 25.7. Summary
26. Late evolution stages of massive stars -- 26.1. Late fusion phases -- 26.2. The internal evolution -- 26.3. Pre-supernovae -- 26.4. Summary
27. Supernovae -- 27.1. Light curves of supernovae -- 27.2. Core collapse -- 27.3. The core collapse supernova explosion -- 27.4. Energetics of core collapse supernovae of massive stars -- 27.5. Observed types of supernovae -- 27.6. The case of Supernova 1987A -- 27.7. The remnants of stellar evolution -- 27.8. Summary
28. Principles of close binary evolution -- 28.1. Periods and angular momentum -- 28.2. Equipotential surfaces of binaries -- 28.3. Contact phases -- 28.4. Changes in period and separation during mass transfer -- 28.5. Stable and runaway mass transfer -- 28.6. Summary
29. Close binaries : examples of evolution with mass transfer -- 29.1. Algol systems : conservative case A mass transfer -- 29.2. Massive interacting binaries : conservative case B mass transfer -- 29.3. Common envelope stars : case C mass transfer -- 29.4. The formation of high-mass X-ray binaries -- 29.5. The formation of low-mass X-ray binaries -- 29.6. Novae : WDs in semi-detached systems -- 29.7. Summary
30. Chemical yields : products of stellar evolution -- 30.1. A summary of the evolution of single stars -- 30.2. Chemical yields of single stars -- 30.3. The main producers of various elements -- 30.4. Summary
Appendices. A. Physical and astronomical constants -- B. Stellar parameters -- C. Solar model -- D. Main sequence from ZAMS to TAMS -- E. Acronyms.
Περίληψη: Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote� and PowerPoint� formats.
Δεν αντιστοιχούν φυσικά τεκμήρια σε αυτήν την εγγραφή

Περιλαμβάνει βιβλιογραφικές παραπομπές.

1. Stars : setting the stage -- 1.1. The sun : our star -- 1.2. The chemical composition of the sun and stars -- 1.3. The structure of stars -- 1.4. Stellar evolution in a nutshell -- 1.5. Summary

2. Observations of stellar parameters -- 2.1. The distance of stars -- 2.2. The mass of stars -- 2.3. The luminosity of stars -- 2.4. Magnitude, color, and temperature -- 2.5. The mass-luminosity relation -- 2.6. The Hertzsprung-Russell diagram and the color-magnitude diagram -- 2.7. Nomenclature of regions in the HRD and CMD -- 2.8. Summary

3. Hydrostatic equilibrium and its consequences -- 3.1. Conservation of mass : the mass continuity equation -- 3.2. Hydrostatic equilibrium -- 3.3. The virial theorem : a consequence of HE -- 3.4. Summary

4. Gas physics of stars -- 4.1. Mean particle mass -- 4.2. A general expression for the pressure -- 4.3. Radiation pressure -- 4.4. Pressure of an ideal gas -- 4.5. Electron Degeneracy -- 4.6. The equation of state (EoS) for electron gas -- 4.7. Neutron degeneracy -- 4.8. Polytropic gas -- 4.9. Summary

5. Opacities in stars -- 5.1. The Rosseland-mean opacity -- 5.2. Electron scattering : [sigma]e -- 5.3. Free-free absorption : [kappa]ff -- 5.4. Bound-freE absorption : [Kappa]BF -- 5.5. BOUND-bound absorption : [kappa]bb -- 5.6. Total Rosseland-mean opacity : [kappa]r -- 5.7. The mean-free path of photons : l -- 5.8. Summary

6. Radiative energy transport -- 6.1. Eddington's equation for radiative equilibrium -- 6.2. Mass-luminosity relation for stars in HE and RE -- 6.3. The Eddington limit : the maximum luminosity and the maximum mass -- 6.4. Summary

7. Convective energy transport -- 7.1. The Schwarzschild criterion for convection -- 7.2. Convection in a layer with a [mu]-gradient : Ledoux criterion -- 7.3. The mixing length : how far does a convective cell rise before it dissolves -- 7.4. The efficiency of convective energy transport -- 7.5. The convective velocity -- 7.6. Typical values of convective velocity and the timescale -- 7.7. The super-adiabatic temperature gradient in convection zones -- 7.8. Convective overshooting -- 7.9. Convection : where and why? -- 7.10. Chemical mixing by convection and its consequences -- 7.11. Summary

8. Nuclear fusion -- 8.1. Reaction rates and energy production -- 8.2. Thermonuclear reaction rates and the Gamow peak -- 8.3. Abundance changes -- 8.4. H[right arrow]He fusion -- 8.5. He[right arrow]C fusion : the triple-gas process -- 8.6. C-fusion, O-fusion, and Ne-photodisintegration -- 8.7. Photodisintegration and the formation of heavy elements -- 8.8. Summary of major nuclear reactions in stars -- 8.9. Formation of heavy elements by neutron capture -- 8.10. The minimum core mass for igniting fusion reactions -- 8.11. Fusion phases of stars in the ([rho]c,Tc) plane -- 8.12. Summary

9. Stellar timescales -- 9.1. The dynamical timescale -- 9.2. The thermal timescale or Kelvin-Helmholtz timescale -- 9.3. The nuclear timescale -- 9.4. The convection timescale -- 9.5. Comparison of timescales -- 9.6. Summary

10. Calculating stellar evolution -- 10.1. Assumptions for computing stellar evolution -- 10.2. The equations of stellar structure -- 10.3. Boundary conditions -- 10.4. Solving the structure equations -- 10.5. Principles of stellar evolution calculations -- 10.6. Summary

11. Polytropic stars -- 11.1. The structure of polytropic stars : P = K[rho][gamma] -- 11.2. Stellar parameters of polytropic models -- 11.3. The mass-radius relation of polytropic stars -- 11.4. Summary

12. Star formation -- 12.1. The interstellar medium -- 12.2. The Jeans mass for gravitational contraction -- 12.3. The collapse of molecular clouds -- 12.4. Fragmentation of molecular clouds -- 12.5. The minimum mass of stars -- 12.6. The end of the free-fall phase -- 12.7. The contraction of a convective protostar : the descent along the Hayashi track -- 12.8. The contraction of a radiative pre-main- sequence star : from the Hayashi track to the main sequence -- 12.9. T Tauri stars and Herbig Ae-Be stars -- 12.10. The destruction of lithium and deuterium -- 12.11. Stars that do not reach H-fusion : brown dwarfs with M < 0.08 M[sun] -- 12.12. The stellar initial mass function -- 12.13. Star formation in the early universe -- 12.14. Summary

13. H-fusion in the core : the main-sequence phase -- 13.1. The zero-age main sequence (ZAMS) : homology relations -- 13.2. The influence of abundances on the ZAMS -- 13.3. Evolution during the main-sequence phase -- 13.4. The end of the MS phase : the TAMS -- 13.5. The MS Lifetime -- 13.6. Summary

14. Principles of post-main-sequence evolution -- 14.1. Isothermal cores : the Sch�onberg-Chandrasekhar limit -- 14.2. The mirror principle of stars with shell fusion -- 14.3. The Hayashi line of fully convective stars -- 14.4. Summary

15. Stellar winds and mass loss -- 15.1. Types of winds -- 15.2. Line-driven winds of hot stars -- 15.3. Dust-driven winds of cool stars -- 15.4. Mass-loss formulae for stellar evolution -- 15.5. Summary

16. Shell H-fusion in low- and intermediate-mass stars : red giants -- 16.1. The start of the H-shell fusion -- 16.2. The H-shell fusion phase of low-mass stars of 0.8-2M[sun] -- 16.3. The H-shell fusion phase of intermediate-mass stars of 2-8 M[sun] -- 16.4. The Mcore-L relation for red giants -- 16.5. Metallicity dependence of the red giant branch -- 16.6. Mass loss during the red giant phase -- 16.7. Summary

17. Helium fusion in low-mass stars : horizontal branch stars -- 17.1. The ignition of helium fusion in low-mass stars -- 17.2. Helium fusion in the core : horizontal branch stars -- 17.3. Evolution on the horizontal branch -- 17.4. The observed HB of globular clusters -- 17.5. Summary

18. Double shell fusion : asymptotic giant branch stars -- 18.1. The start of the AGB phase -- 18.2. The Mcore-L relation of AGB stars -- 18.3. The second dredge-up at the beginning of the AGB phase -- 18.4. The thermal pulsing AGB phase (TP-AGB) -- 18.5. The third dredge-up -- 18.6. Summary of the dredge-up phases -- 18.7. The evolution speed during the AGB phase -- 18.8. Mass loss and the end of the AGB evolution -- 18.9. Summary

19. Post-AGB evolution and planetary nebulae -- 19.1. The post-AGB phase -- 19.2. Born-again AGB stars -- 19.3. Planetary nebulae -- 19.4. Fading to the white dwarf phase -- 19.5. Summary

20. White dwarfs and neutron stars -- 20.1. Stars that become white dwarfs -- 20.2. The structure of white dwarfs -- 20.3. The Chandrasekhar mass limit for white dwarfs -- 20.4. The cooling of white dwarfs -- 20.5. Neutron stars -- 20.6. Summary

21. Pulsating stars -- 21.1. Classical Radial Pulsators -- 21.2. Pulsation periods of classical radial pulsators -- 21.3. The [kappa]-mechanism of classical radial pulsators -- 21.4. An example : the pulsation of [delta] Cephei -- 21.5. Nonradial pulsations and asteroseismology -- 21.6. Summary

22. Observations of massive stars : evidence for evolution with mass loss -- 22.1. The observed upper limit in the HRD -- 22.2. The atmospheric Eddington limit -- 22.3. Luminous blue variables and the atmospheric Eddington limit -- 22.4. Wolf-Rayet stars -- 22.5. The dependence of massive star evolution on metallicity -- 22.6. Summary

23. Evolution of massive stars of 8-25M[sun] -- 23.1. Predicted evolutionary tracks -- 23.2. The internal evolution during the post-MS phase of stars of 8 to 25M[sun] -- 23.3. Stellar pulsation during blue loops -- 23.4. Summary

24. The evolution of massive stars of 25-120M[sun] : dominated by mass loss -- 24.1. The effect of mass loss during the main-sequence phase -- 24.2. Predicted evolution tracks with mass loss -- 24.3. The evolution of a 60M[sun] star with mass loss -- 24.4. The Conti scenario -- 24.5. Summary

25. Rotation and stellar evolution -- 25.1. The critical velocity of rotating stars -- 25.2. The Von Zeipel effect -- 25.3. nonspherical mass loss of rapidly rotating stars -- 25.4. Mixing by meridional circulation -- 25.5. The effect of rotation on the evolution of massive stars -- 25.6. Homogeneous evolution -- 25.7. Summary

26. Late evolution stages of massive stars -- 26.1. Late fusion phases -- 26.2. The internal evolution -- 26.3. Pre-supernovae -- 26.4. Summary

27. Supernovae -- 27.1. Light curves of supernovae -- 27.2. Core collapse -- 27.3. The core collapse supernova explosion -- 27.4. Energetics of core collapse supernovae of massive stars -- 27.5. Observed types of supernovae -- 27.6. The case of Supernova 1987A -- 27.7. The remnants of stellar evolution -- 27.8. Summary

28. Principles of close binary evolution -- 28.1. Periods and angular momentum -- 28.2. Equipotential surfaces of binaries -- 28.3. Contact phases -- 28.4. Changes in period and separation during mass transfer -- 28.5. Stable and runaway mass transfer -- 28.6. Summary

29. Close binaries : examples of evolution with mass transfer -- 29.1. Algol systems : conservative case A mass transfer -- 29.2. Massive interacting binaries : conservative case B mass transfer -- 29.3. Common envelope stars : case C mass transfer -- 29.4. The formation of high-mass X-ray binaries -- 29.5. The formation of low-mass X-ray binaries -- 29.6. Novae : WDs in semi-detached systems -- 29.7. Summary

30. Chemical yields : products of stellar evolution -- 30.1. A summary of the evolution of single stars -- 30.2. Chemical yields of single stars -- 30.3. The main producers of various elements -- 30.4. Summary

Appendices. A. Physical and astronomical constants -- B. Stellar parameters -- C. Solar model -- D. Main sequence from ZAMS to TAMS -- E. Acronyms.

Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote� and PowerPoint� formats.

Πανεπιστήμιο Πατρών, Βιβλιοθήκη & Κέντρο Πληροφόρησης, 265 04, Πάτρα
Τηλ: 2610969621, Φόρμα επικοινωνίας
Εικονίδιο Facebook Εικονίδιο Twitter Εικονίδιο Soundcloud