Εικόνα εξωφύλλου από Amazon
Εξώφυλλο από Amazon.com
Κανονική προβολή Προβολή MARC Προβολή ISBD

Gamma-ray bursts / Andrew Levan.

Κατά: Τύπος υλικού: ΚείμενοΚείμενοΣειρά: AAS-IOP astronomy. Release 1.Λεπτομέρειες δημοσίευσης: Bristol : IOP Publishing, c2018.Περιγραφή: 1 ηλεκτρονική πηγή (ποικίλες σελιδαριθμήσεις) : εικ. (μερ. έγχρ.)ISBN:
  • 9780750315029
  • 9780750315012
Θέμα(τα): Ταξινόμηση DDC:
  • 522.686 2 23
Πηγές στο διαδίκτυο:
Περιεχόμενα:
1. A historical primer -- 1.1. A lesson in serendipity -- 1.2. GRB phenomenology -- 1.3. The early years -- 1.4. Suggested models for GRB creation -- 1.5. Intensive efforts and large samples -- 1.6. The fireball shock model -- 1.7. The long-GRB afterglow revolution -- 1.8. Redshifts and host galaxies -- 1.9. The supernova connection -- 1.10. GRB energetics -- 1.11. The Neil Gehrels Swift era -- 1.12. New insights from fermi -- 1.13. Multimessenger astronomy -- 1.14. Summary
2. Prompt emission -- 2.1. Observational properties -- 2.2. Origin of the prompt emission -- 2.3. Summary
3. Afterglow emission -- 3.1. The first afterglow searches -- 3.2. X-ray afterglows -- 3.3. Optical afterglows -- 3.4. Radio/submillimeter afterglows -- 3.5. Emission processes -- 3.6. Evidence for relativistic beaming
4. Central engines -- 4.1. The requirement of a central engine -- 4.2. Black hole central engines -- 4.3. Magnetar central engines -- 4.4. Central engines in other astrophysical transients -- 4.5. Summary
5. Long-GRB progenitors -- 5.1. The GRB-supernova connection -- 5.2. Observational constraints on stellar masses and sizes -- 5.3. Other populations of long-duration GRBs -- 5.4. Low-luminosity GRBs -- 5.5. Extremely long gamma-ray transients -- 5.6. Constraints for GRB production -- 5.7. Binary or single?
6. Short-GRB progenitors -- 6.1. Introduction -- 6.2. Progenitor models -- 6.3. Prompt emission properties -- 6.4. Afterglow properties -- 6.5. Host galaxy properties -- 6.6. Locations -- 6.7. Redshifts and energetics -- 6.8. Radioactively driven transients -- 6.9. Gravitational-wave emission
7. GRBs as cosmological probes -- 7.1. A range of cosmological probes -- 7.2. Science from high-z GRB afterglows -- 7.3. GRBs beyond z [tilde operator] 5 -- 7.4. GRBs from population iii stars -- 7.5. The universal star formation rate -- 7.6. Cosmological parameters from GRBs -- 7.7. The GRB hubble diagram
8. Long-GRB host galaxies -- 8.1. Early observations -- 8.2. GRB hosts in the galaxy zoo -- 8.3. Basic properties of long-GRB hosts -- 8.4. Building meaningful samples of GRB hosts -- 8.5. GRBs hosts at optical and ir wavelengths -- 8.6. GRB hosts at submillimeter and radio wavelengths -- 8.7. GRB hosts as tools to probe progenitors -- 8.8. GRB hosts as tools to probe distant galaxies -- 8.9. Burst locations and environments -- 8.10. Comparative properties of GRB hosts with other core-collapse events
9. Multimessenger astronomy -- 9.1. From multiwavelength to multimessenger astronomy -- 9.2. Gravitational waves -- 9.3. Sources of gravitational-wave emission -- 9.4. Gravitational-wave horizons -- 9.5. Prospect for joint detections -- 9.6. Electromagnetic searches in black hole-black hole mergers -- 9.7. GW 170817 and GRB 170817a -- 9.8. Gravitational wave-electromagnetic detections : questions for the future -- 9.9. Neutrino emission -- 9.10. Ultra-high-energy cosmic rays -- 9.11. Summary
10. GRB astronomy : summary and future outlook -- 10.1. Challenges for the future -- 10.2. Possibilities for future GRB detection missions -- 10.3. The crucial role of follow-up -- 10.4. Summary.
Περίληψη: As the most powerful explosion that occurs in the universe, gamma-ray bursts (GRBs) are one of the most exciting topics being studied in astrophysics. Creating more energy than the Sun does in its entire lifetime, GRBs create a blaze of light that will outshine every other object visible in the sky, enabling us to measure galaxies that are several million years old.
Δεν αντιστοιχούν φυσικά τεκμήρια σε αυτήν την εγγραφή

Περιλαμβάνει βιβλιογραφικές παραπομπές.

1. A historical primer -- 1.1. A lesson in serendipity -- 1.2. GRB phenomenology -- 1.3. The early years -- 1.4. Suggested models for GRB creation -- 1.5. Intensive efforts and large samples -- 1.6. The fireball shock model -- 1.7. The long-GRB afterglow revolution -- 1.8. Redshifts and host galaxies -- 1.9. The supernova connection -- 1.10. GRB energetics -- 1.11. The Neil Gehrels Swift era -- 1.12. New insights from fermi -- 1.13. Multimessenger astronomy -- 1.14. Summary

2. Prompt emission -- 2.1. Observational properties -- 2.2. Origin of the prompt emission -- 2.3. Summary

3. Afterglow emission -- 3.1. The first afterglow searches -- 3.2. X-ray afterglows -- 3.3. Optical afterglows -- 3.4. Radio/submillimeter afterglows -- 3.5. Emission processes -- 3.6. Evidence for relativistic beaming

4. Central engines -- 4.1. The requirement of a central engine -- 4.2. Black hole central engines -- 4.3. Magnetar central engines -- 4.4. Central engines in other astrophysical transients -- 4.5. Summary

5. Long-GRB progenitors -- 5.1. The GRB-supernova connection -- 5.2. Observational constraints on stellar masses and sizes -- 5.3. Other populations of long-duration GRBs -- 5.4. Low-luminosity GRBs -- 5.5. Extremely long gamma-ray transients -- 5.6. Constraints for GRB production -- 5.7. Binary or single?

6. Short-GRB progenitors -- 6.1. Introduction -- 6.2. Progenitor models -- 6.3. Prompt emission properties -- 6.4. Afterglow properties -- 6.5. Host galaxy properties -- 6.6. Locations -- 6.7. Redshifts and energetics -- 6.8. Radioactively driven transients -- 6.9. Gravitational-wave emission

7. GRBs as cosmological probes -- 7.1. A range of cosmological probes -- 7.2. Science from high-z GRB afterglows -- 7.3. GRBs beyond z [tilde operator] 5 -- 7.4. GRBs from population iii stars -- 7.5. The universal star formation rate -- 7.6. Cosmological parameters from GRBs -- 7.7. The GRB hubble diagram

8. Long-GRB host galaxies -- 8.1. Early observations -- 8.2. GRB hosts in the galaxy zoo -- 8.3. Basic properties of long-GRB hosts -- 8.4. Building meaningful samples of GRB hosts -- 8.5. GRBs hosts at optical and ir wavelengths -- 8.6. GRB hosts at submillimeter and radio wavelengths -- 8.7. GRB hosts as tools to probe progenitors -- 8.8. GRB hosts as tools to probe distant galaxies -- 8.9. Burst locations and environments -- 8.10. Comparative properties of GRB hosts with other core-collapse events

9. Multimessenger astronomy -- 9.1. From multiwavelength to multimessenger astronomy -- 9.2. Gravitational waves -- 9.3. Sources of gravitational-wave emission -- 9.4. Gravitational-wave horizons -- 9.5. Prospect for joint detections -- 9.6. Electromagnetic searches in black hole-black hole mergers -- 9.7. GW 170817 and GRB 170817a -- 9.8. Gravitational wave-electromagnetic detections : questions for the future -- 9.9. Neutrino emission -- 9.10. Ultra-high-energy cosmic rays -- 9.11. Summary

10. GRB astronomy : summary and future outlook -- 10.1. Challenges for the future -- 10.2. Possibilities for future GRB detection missions -- 10.3. The crucial role of follow-up -- 10.4. Summary.

As the most powerful explosion that occurs in the universe, gamma-ray bursts (GRBs) are one of the most exciting topics being studied in astrophysics. Creating more energy than the Sun does in its entire lifetime, GRBs create a blaze of light that will outshine every other object visible in the sky, enabling us to measure galaxies that are several million years old.

Κοινοποίηση
Πανεπιστήμιο Πατρών, Βιβλιοθήκη & Κέντρο Πληροφόρησης, 265 04, Πάτρα
Τηλ: 2610969621, Φόρμα επικοινωνίας
Εικονίδιο Facebook Εικονίδιο Twitter Εικονίδιο Soundcloud